Videoini video pembelajaran matematika kelas VIII.Pada video ini dibahas materi Aplikasi barisan geometri dan deret geometri.Ada soal dan pembahasan soal ce Barisandan deret geometri. Rumuscoid pada kesempatan kali ini kita akan membahas tentang rumus deret aritmatika dan pada pembahasan sebelumnya kita telah membahas soal rumus geometrirumus aritmatika atau bisa di sebut juga dengan barisan aritmatika di bagi menjadi beberapa macam yang pertama adalah rumus aritmatika bertingkat U9 2 x 6561. Hari ini kita mau latihan soal tentang pola bilangan ya. Lihat juga tentang soal dan contoh soal pola bilangan aritmatika dan geometri Berikut ini penjelasan mengenai Barisan Dan Deret Geometri beserta soal dan pembahasannya setelah sebelumnya kita membahasa barisan dan deret aritmatika. Soal dan pembahasan barisan geometri smp Materi11 Barisan dan Deret Aritmatika. Catatan: Biasanya di dalam Ujian Nasional SMK kelas 12 untuk jurusan akuntansi dan pemasaran, soal barisan dan deret aritmatika akan muncul paling banyak 2 soal. Materi ini bagi sebagian Barisangeometri ini merupakan bagian dari Barisan bilangan dan deret dalam matematika. 8112016 Contoh Soal Deret Geometri I. 1 2 4 8 16 32 64 adalah barisan geometri dengan rasio 2. A panjang alas segitiga Terdapat Suatu amoeba kemudian amoeba tersebut melakukan pembelahan diri hingga menjadi 2 dalam setiap 6 menit. Padamateri barisan dan deret geometri, Gengs akan menemukan huruf a, n, r, U dan S. Inti dari mengerjakan soal-soal berikut ini yaitu Geng menguasai materi barisan dan deret geometri. Jadi, bagi kalian yang belum paham materinya, silahkan pelajari materinya. Soal 1 Jumlah penduduk suatu kota dalam 5 tahun menjadi dua kali lipat. xMn8A. Berikut ini penulis sajikan soal-soal beserta pembahasannya tentang soal cerita aplikasi mengenai barisan dan deret geometri. Soal-soal ini dikumpulkan dari berbagai sumber termasuk soal UN maupun SBMPTN. Soal juga dapat diunduh melalui tautan berikut Download PDF, 117 KB. Baca Juga Soal dan Pembahasan – Aplikasi Soal Cerita Barisan dan Deret Aritmetika Today Quote “2get” and “2give” create many problems. So, just double it. “4get” and “4give” solve many problems. Bagian Pilihan Ganda Soal Nomor 1 Hasil produksi kerajinan seorang pengusaha setiap bulannya meningkat mengikuti aturan barisan geometri. Produksi pada bulan pertama sebanyak $150$ unit kerajinan dan pada bulan keempat sebanyak $ kerajinan. Hasil produksi selama $5$ bulan adalah $\cdots$ unit kerajinan. A. $ D. $ B. $ E. $ C. $ Pembahasan Diketahui $a = 150$ dan $\text{U}_4 = Rasio barisan geometri ini dapat ditentukan dengan melakukan perbandingan antarsuku sebagai berikut. $\begin{aligned} \dfrac{\text{U}_4}{\text{U}_1} & = \dfrac{ \\ \dfrac{\cancel{a} r^3}{\cancel{a}} & = 27 \\ r^3 & = 27 \\ r & = \sqrt[3]{27} = 3 \end{aligned}$ Dengan demikian, $\begin{aligned} \text{S}_n & = \dfrac{ar^n-1} {r-1} \\ \text{S}_5 & = \dfrac{1503^5 -1} {3 -1} \\ & = \dfrac{150243 -1}{2} \\ & = 75 \cdot 242 = \end{aligned}$ Jadi, hasil produksi selama $5$ bulan adalah $\boxed{ unit kerajinan. Jawaban B [collapse] Soal Nomor 2 Seutas tali dipotong menjadi $4$ bagian, masing-masing membentuk barisan geometri. Jika potongan tali terpendek adalah $2$ cm dan potongan tali terpanjang adalah $54$ cm, panjang tali semula adalah $\cdots$ cm. A. $60$ C. $80$ E. $100$ B. $70$ D. $90$ Pembahasan Panjangnya setiap potongan tali merupakan suku-suku dalam barisan geometri, dengan $\text{U} _1 = a = 2$ dan $\text{U}_4 = 54$. Dalam hal ini, akan dicari $\text{S}_4 = \text{U}_1 + \text{U}_2 + \text{U}_3 + \text{U}_4.$ Langkah pertama adalah menentukan rasionya. $\begin{aligned} \text{U}_4 & = ar^3 \\ 54 & = 2r^3 \\ 27 & = r^3 \\ r & = \sqrt[3]{27} = 3 \end{aligned}$ Jadi, rasio barisannya adalah $3$. Untuk itu, didapat $\text{U}_2 = ar = 2 \cdot 3 = 6$ dan $\text{U}_3 = ar^2 = 2 \cdot 3^2 = 18.$ Dengan demikian, $\text{S}_4 = 2 + 6 + 18 + 54 = 80.$ Jadi, panjang tali semula sebelum dipotong adalah $\boxed{80~\text{cm}}$ Jawaban C [collapse] Baca Juga Soal dan Pembahasan – Barisan dan Deret Geometri Soal Nomor 3 Pesawat terbang melaju dengan kecepatan $300$ km/jam pada menit pertama. Kecepatan pada menit berikutnya $1\dfrac12$ kali dari kecepatan sebelumnya. Panjang lintasan seluruhnya dalam $4$ menit pertama adalah $\cdots \cdot$ A. $ km D. $ km B. $ km E. $ km C. $ km Pembahasan Kecepatan pesawat tiap menitnya membentuk barisan geometri. Diketahui $a = 300$ dan $r= 1\dfrac12 = \dfrac32.$ Ditanya $\text{S}_4$ Dengan demikian, $\begin{aligned} \text{S}_n & = \dfrac{ar^n-1} {r-1} \\ \text{S}_4 & = \dfrac{300\left\left\dfrac32\right^4 -1\right} {\dfrac32 -1} \\ & = \dfrac{300\left\dfrac{81}{16} -\dfrac{16}{16}\right} {\dfrac12} \\ & = 300 \cdot \dfrac{65}{16} \cdot 2 = \end{aligned}$ Jadi, panjang lintasan seluruhnya dalam $4$ menit pertama adalah $\boxed{ Jawaban A [collapse] Soal Nomor 4 Sejak tahun $2018$, terjadi penurunan pengiriman surat dari kantor pos. Setiap tahunnya banyak surat yang dikirim berkurang sebesar $\dfrac15$ dari banyak surat yang dikirim pada tahun sebelumnya. Jika pada tahun $2018$ dikirim sekitar $1$ juta surat, maka jumlah surat yang dikirim selama kurun waktu $2018 – 2022$ adalah $\cdots$ juta surat. A. $\dfrac{2101}{625}$ D. $\dfrac{365}{125}$ B. $\dfrac{369}{125}$ E. $\dfrac{360}{125}$ C. $\dfrac{2100}{625}$ Pembahasan Kasus di atas merupakan kasus barisan dan deret geometri. Diketahui $a = 1$ dalam satuan juta. Karena banyak surat berkurang sebesar $\dfrac15$ tiap tahunnya, maka pada tahun berikutnya, banyak surat menjadi $1 -\dfrac15 = \dfrac45$ sehingga rasionya adalah $r = \dfrac45$. Kurun waktu dari tahun $2018$ sampai $2022$ selama $5$ tahun sehingga $n = 5$. Dengan demikian, $\begin{aligned} \text{S}_n & = \dfrac{a1-r^n} {1-r} \\ \text{S}_5 & = \dfrac{1\left1 -\left\dfrac45\right^5 \right} {1 – \dfrac45} \\ & = \dfrac{1- \dfrac{ {\dfrac15} \\ & = \dfrac{ \times \cancel{5} = \dfrac{ \end{aligned}$ Jadi, jumlah surat yang dikirim selama kurun waktu $2018 -2022$ adalah $\boxed{\dfrac{ juta surat. Jawaban A [collapse] Baca Juga Soal dan Pembahasan – Deret Geometri Tak Hingga Soal Nomor 5 Dua orang anak sedang melakukan percobaan matematika dengan menjatuhkan sebuah bola dari lantai $2$ rumah mereka. Ketinggian bola dijatuhkan adalah $9$ meter dari atas tanah. Dari pengamatan, diketahui bahwa pantulan bola mencapai $\dfrac89$ dari tinggi pantulan sebelumnya. Ketinggian bola setelah pantulan ke-$5$ yang paling mendekati adalah $\cdots$ m. A. $4,00$ D. $4,75$ B. $4,25$ E. $5,00$ C. $4,50$ Pembahasan Kasus ini merupakan kasus barisan geometri. Tinggi pantulan pertama adalah $9 \times \dfrac89 = 9$ meter. Dengan demikian, diketahui $\text{U}_1 = 9$ dan $r = \dfrac89.$ Ditanya $\text{U}_5.$ $\begin{aligned} \text{U}_n & = ar^{n-1} \\ \text{U}_5 & = 9\left\dfrac89 \right^{5-1} \\ & = \dfrac{8^5}{9^4} \approx 5 \end{aligned}$ Ketinggian bola setelah pantulan ke-$5$ yang paling mendekati adalah $\boxed{5~\text{m}}$ Jawaban E [collapse] Soal Nomor 6 Bakteri A berkembang biak menjadi dua kali lipat setiap lima menit. Setelah $15$ menit, banyak bakteri ada $400$. Banyak bakteri setelah $30$ menit adalah $\cdots \cdot$ A. $800$ D. $ B. $ E. $ C. $ Pembahasan Misalkan $\text{U}_1$ menyatakan banyaknya bakteri mula-mula $0$ menit, $\text{U}_2$ saat $5$ menit, $\text{U}_3$ saat $10$ menit, dan seterusnya. Diketahui $\text{U}_4 = ar^3 = 400$ dan $r = 2.$ Ditanya $\text{U}_7$. Dengan demikian, didapat $\begin{aligned} \text{U}_n & = ar^{n-1} \\ \text{U}_7 & = ar^6 \\ & = ar^3r^3 \\ & = 4002^3 = 4008 = \end{aligned}$ Banyak bakteri setelah $30$ menit adalah $\boxed{ Jawaban D [collapse] Baca Juga Soal dan Pembahasan – Barisan dan Deret Versi HOTS/Olimpiade Soal Nomor 7 Chandra mengambil sebotol air dari Laut Mati yang berisi $50$ archaebacteria untuk dikembangbiakkan di laboratorium. Andaikan satu archaebacteria mulai menggandakan diri setiap $25$ menit, berapa jumlah banyaknya archaebacteria selama $5$ jam? A. $ D. $ B. $ E. $ C. $ Pembahasan Banyaknya archaebacteria setiap 25 menit membentuk barisan geometri dengan banyak mula-mula $a = 50$ dan rasio $r = 2$ karena menggandakan diri. Perhatikan bahwa dalam waktu $5$ jam setara dengan $300$ menit, archaebacteria mengalami penggandaan diri sebanyak $\dfrac{300}{25} = 12$ kali. Artinya, kita mencari suku ke-$13$ perlu ditambah $1$ yang merepresentasikan banyak archaebacteria selama $5$ jam. $$\begin{aligned} \text{U}_{n} & = ar^{n-1} \\ \text{U}_{13} & = 50 \cdot 2^{13-1} \\ & = 50 \cdot 2^{12} \\ & = 50 \cdot = \end{aligned}$$Jadi, banyaknya archaebacteria selama $5$ jam adalah $\boxed{ Jawaban C [collapse] Soal Nomor 8 Keuntungan sebuah percetakan setiap bulannya bertambah menjadi dua kali lipat dari keuntungan bulan sebelumnya. Jika keuntungan bulan pertama maka keuntungan percetakan tersebut pada bulan keenam adalah $\cdots \cdot$ A. B. C. D. E. Pembahasan Kasus di atas adalah masalah kontekstual terkait barisan geometri dengan $a = dan $r = 2$. Dalam hal ini, akan dicari nilai dari $\text{U}_6.$ $\begin{aligned} \text{U}_n & = ar^{n-1} \\ \text{U}_6 & = \cdot 2^{6-1} \\ & = \cdot 2^5 \\ & = \cdot 32 = \end{aligned}$ Jadi, keuntungan percetakan tersebut pada bulan keenam adalah Jawaban B [collapse] Soal Nomor 9 Pertambahan penduduk setiap tahun suatu desa mengikuti aturan barisan geometri. Pertambahan penduduk pada tahun $2010$ sebesar $24$ orang dan pada tahun $2012$ sebesar $96$ orang. Pertambahan penduduk pada tahun $2015$ adalah $\cdots$ orang. A. $687$ C. $766$ E. $876$ B. $768$ D. $867$ Pembahasan Misalkan pertambahan penduduk pada tahun $2010$ disimbolkan sebagai $\text{U}_1 =a = 24$. Dengan demikian, diperoleh $\begin{aligned} \text{U}_3 & = ar^2 \\ 24r^2 & = 96 \\ r^2 & = \dfrac{96}{24} = 4 \\ r & = 2. \end{aligned}$ Pertambahan penduduk pada tahun $2015$ adalah $\boxed{\text{U}_6 = ar^5 = 242^5 = 768~\text{orang}}$ Jawaban B [collapse] Soal Nomor 10 Pertambahan pengunjung sebuah hotel mengikuti barisan geometri. Pada tahun $2015$ pertambahannya $42$ orang dan pada tahun $2017$ pertambahannya $168$ orang. Pertambahan pengunjung hotel tersebut pada tahun $2020$ adalah $\cdots \cdot$ A. $ orang D. $472$ orang B. $762$ orang E. $336$ orang C. $672$ orang Pembahasan Misalkan pertambahan pengunjung hotel pada tahun $2015$ disimbolkan sebagai $\text{U}_1 =a = 42$. Dengan demikian, pertambahan pengunjung hotel pada tahun $2017$ adalah $\text{U}_3 = 168$. Selanjutnya, akan dicari rasio barisan geometri tersebut. $\begin{aligned} \text{U}_3 & = ar^2 \\ 42r^2 & = 168 \\ r^2 & = \dfrac{168}{42} = 4 \\ r & = 2 \end{aligned}$ Pertambahan pengunjung hotel pada tahun $2020$ adalah $\text{U}_6 = ar^5 = 422^5 = \boxed{1344~\text{orang}}$ Jawaban A [collapse] Soal Nomor 11 Hasil observasi pada penderita suatu penyakit tertentu, ditemukan bakteri yang menyebabkan luka pada bagian kaki penderita akan semakin melebar. Untuk mencegah pertumbuhan dan sekaligus mengurangi jumlah bakteri hingga sembuh, penderita diberikan obat khusus yang diharapkan dapat mengurangi bakteri sebanyak $20\%$ pada setiap tiga jamnya. Jika pada awal observasi jam terdapat sekitar $ bakteri dan langsung diberikan obat yang pertama, perkiraan jumlah bakteri setelah pemberian obat pada pukul adalah $\cdots \cdot$ A. $100$ bakteri D. $ bakteri B. $ bakteri E. $ bakteri C. $ bakteri Pembahasan Misalkan $\text{U}_1$ menyatakan banyak bakteri pada saat jam $\text{U}_2$ saat jam sampai $\text{U}_5$ saat jam Karena jumlah bakteri berkurang sebesar $20\%$, maka jumlah bakteri saat jam tertentu dapat ditentukan dengan menggunakan konsep barisan geometri dengan suku pertama $\text{U}_1 = dan $r = 1-20\% = 80\% = \dfrac45$. Akan dicari $\text{U}_5$. $\begin{aligned} \text{U}_5 & = ar^4 \\ & = \times \left\dfrac45\right^4 \\ & = \cancel{5^4} \times 10 \times \dfrac{4^4}{\cancel{5^4}} \\ & = 10 \times 256 = \end{aligned}$ Jadi, perkiraan jumlah bakteri setelah pemberian obat pada pukul adalah $ bakteri. Jawaban C [collapse] Baca Juga Soal dan Pembahasan – Barisan dan Deret Aritmetika Halo, Sobat Zenius! Elo yang duduk di kelas 11 pasti lagi berkutat, ya, sama materi yang satu ini? Nggak perlu khawatir, gue mau ngajak elo semua buat membahas contoh soal barisan dan deret geometri kelas 11 lengkap beserta cara pengerjaannya. Materi ini tentu akan ada di dalam soal TPS. Jadi, elo perlu mempersiapkannya dengan baik. Sebelum masuk ke pembahasan contoh soalnya, gue mau membahas sedikit mengenai apa itu barisan dan deret geometri. Pengertian Barisan dan Deret Geometri Ilustrasi sempoa Dok. Pixabay Barisan dan deret geometri adalah salah satu materi yang dipelajari dalam Matematika SMA. Barisan geometri adalah baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui perkalian dengan suatu bilangan. Perbandingan atau rasio antara nilai suku-suku yang berdekatan selalu sama yaitu r. Nilai suku pertama dilambangkan dengan a. Untuk mengetahui nilai suku ke-n dari suatu barisan geometri dapat dihitung dengan rumus berikut. Sedangkan, deret geometri adalah penjumlahan suku-suku dari barisan geometri. Penjumlahan dari suku-suku pertama sampai suku ke-n barisan geometri dapat dihitung dengan rumus berikut. dengan syarat r 1 Contoh Soal Barisan dan Deret Geometri Contoh Soal 1 Soal Khusus Selembar kertas dipotong menjadi dua bagian. Setiap bagian dipotong menjadi dua dan seterusnya. Jumlah potongan kertas setelah potongan kelima sama dengan… Pembahasan Diketahui a = 1 r = 2 Ditanya Jawab = 16 Jadi, jumlah potongan kertas setelah potongan kelima adalah 16 Contoh Soal 2 Pada sebuah deret geometri diketahui bahwa suku pertamanya adalah 3 dan suku ke-9 adalah 768. Suku ke-7 deret tersebut adalah… Pembahasan Diketahui a = 3Ditanya Jawab Sebelum kita mencari nilai dari , kita akan mencari nilai r terlebih dahulu. Ingat kembali bahwa sehingga dapat ditulis menjadi Sehingga, Jadi, suku ke-7 deret tersebut adalah 192. Contoh Soal 3 Diketahui suku ke-5 dari barisan geometri adalah 243, hasil bagi suku ke-9 dengan suku ke-6 adalah 27. Suku ke-2 dari barisan tersebut adalah… Pembahasan Dalam contoh soal barisan dan deret geometri di atas, diketahui Ditanya Jawab Sebelum kita mencari nilai dari , kita akan mencari nilai a dan r terlebih dahulu. Ingat kembali maka Substitusikan r = 3 ke persamaan sehingga = 9 Jadi, suku ke-2 dari barisan tersebut adalah 9. Contoh Soal 4 Jumlah 6 suku pertama deret geometri 2 + 6 + 18 + … adalah… Pembahasan Diketahui a = 2 r = 3 ditanyakan Jawab Jadi, jumlah 6 suku pertama deret geometri tersebut adalah 728. Rumus barisan dan deret geometri termasuk dalam ragam materi rumus matematika. Untuk mempelajari kumpulan rumus lainnya, klik link artikel berikut Kumpulan Rumus Matematika Lengkap dengan Keterangannya. Nah, sudah paham, kan, materi barisan dan deret geometri kelas 11? Segini aja pembahasan tentang contoh soal barisan dan deret geometri beserta pembahasan dan rumus-rumusnya. Biar makin ngerti tentang rumus barisan dan deret, jangan lupa buat banyak-banyak latihan biar lancar. Berikut ini gue kumpulin artikel dan latihan soal tentang barisan dan deret yang bisa elo baca lebih lanjut Rumus Suku ke N dalam Barisan Aritmatika dan Geometri Contoh Soal Barisan dan Deret Aritmatika dengan Pembahasan Barisan dan Deret Aritmatika, Rumus dan Penerapannya Sebenarnya, materi yang satu ini tidak begitu sulit asalkan Sobat Zenius terus mempelajarinya dengan tekun. Kalau Sobat Zenius mau eksplor lebih dalam lagi mengenai materi ini, elo bisa langsung klik banner di bawah ini! Di sana juga ada banyak contoh soal pembahasan yang bisa bikin elo makin paham! Dari banner di atas, elo nggak cuman bisa dapetin materi barisan dan deret geometri aja, tapi juga bisa sekalian eksplor beragam materi Matematika kelas 11 dan SNBT. Dengan begitu, elo punya persiapan yang matang saat menghadapi Ujian Sekolah dan SNBT. Zenius punya beberapa paket belajar yang bisa elo pilih sesuai kebutuhan. Langsung aja klik banner di bawah ini. Jadi, semangat belajar, ya! Kumpulan Rumus Matematika Lengkap Rumus Jumlah n Suku Pertama Deret Aritmatika – Materi Matematika Kelas 11 5 Contoh Soal Barisan dan Deret Aritmatika Pembahasan Lengkap Biar makin ngerti tentang persen, jangan lupa buat banyak-banyak latihan biar lancar. Berikut Zenius kasih video materi dan latihan soal beserta pembahasannya yang asyik banget. Berani sekalian ngetes skill matematika? Nih, cobain Zencore! Dengan fitur adaptive learning, elo bisa tau seberapa jago kemampuan fundamental elo lewat kuis CorePractice, sekaligus upgrade otak biar makin cerdas. Elo juga bisa ajak temen-temen buat push rank. Klik banner di bawah buat cobain! Originally published January 31, 2020Updated by Maulana Adieb Jakarta - Geometri sering kita jumpai. Dalam kehidupan sehari-hari banyak kejadian yang memiliki pola tertentu sehingga membantu kita dalam beraktivitas. Contohnya dapat kita temukan dalam jumlah penduduk suatu penduduk pada suatu kota A, selalu meningkat 3 kali dari tahun sebelumnya. Hasil sensus penduduk tahun 2020 menunjukkan jumlah penduduk di kota tersebut adalah jiwa. Pada kasus ini kita dapat menghitung Jumlah penduduk di suatu kota dari tahun ke tahun dapat diprediksi menggunakan barisan dan deret merupakan barisan bilangan yang suku berikutnya didapat dari penambahan suku sebelumnya. Sedangkan deret adalah penjumlahan dari barisan. Barisan dan deret dibedakan menjadi aritmatika dan geometri. Artikel ini akan menjelaskan tentang deret lebih mudah memahami deret geometri, dapat dilihat contoh berikutBarisan geometri 2, 6 , 18 , 54 , ... .Deret geometri 2 + 6 + 18 + 54 + ... .Jumlah n suku pertama deret geometri ditulis dengan SnJadi S1 = U1 = 2 S2 = U1 + U2 = 2 + 6 = 8 S3 = U1 + U2 + U3 = 2 + 6 + 18 = 26 S4 = U1 + U2 + U3 + U4 = 2 + 6 + 18 + 54 = 80Sehingga rumus deret geometri dapat diformulasikan denganRumus deret geometri yang bisa membantu siswa belajar matematika Foto Sumber Belajar Kemdikbud Sedangkan rumus jumlah n suku pertama deret geometri ditemukan dengan Sn = U1 + U2 + U3 + ... + UnSn = a + ar + ar2 + ... + arn-1 r x Sn = ar + ar2 + .... + arn-1 + arn -Sn- = a + 0 + 0 + + 0 + arn1 - rSn = a - arn1 - rSn = a 1 - rnRumus geometri Foto Istimewa Contoh Soal Deret GeometriJumlah dari 400 + 200 + 100 + 50 + 25 + 12,5 = ...Jawaban a = 400 r = 200 400 = 100 200 = ½ n = 6 Jadi jumlah dari 500 + 200 + 100 + 50 + 25 + 12,5 = 787,5Itulah penjelasan deret geometri dan contoh soalnya, mudah kan. Sekarang coba detikers cari apa ada contoh deret geometri lain di sekitarmu? Simak Video "Ini Nono, Siswa SD NTT yang Menang Lomba Matematika Tingkat Dunia" [GambasVideo 20detik] lus/lus Pada pembelajaran modul ini, Anda akan belajar mengenai barisan dan deret geometri meliputi bentuk umum barisannya, rumus umumnya, dan aplikasinya. Barisan dan deret geometri merupakan materi kelanjutan dari barisan dan deret aritmetika. Oleh karenanya, proses pembelajaran untuk materi pada modul ini akan dapat berjalan dengan baik jika Anda mengikuti langkah-langkah berikut 1. Ingat kembali materi • Akar dan pangkat • Pola bilangan • Barisan dan deret aritmetika 2. Pelajari materi pada setiap kegiatan belajar, selesaikan Latihan pada forum diskusi, dan selesaikan tes formatif secara mandiri. 3. Cocokkan jawaban tes formatif yang Anda kerjakan dengan kunci jawaban yang diberikan. 4. Apabila tingkat penguasaan Anda 74% atau lebih, Anda dapat melanjutkan ke kegiatan belajar selanjutnya. Apabila tingkat penguasaan Anda kurang dari 74%, maka Anda harus mempelajari kembali materi yang belum Anda pahami. 5. Keberhasilan pembelajaran Anda dalam mempelajari materi pada modul ini sangat tergantung pada kesungguhan Anda dalam belajar dan mengerjakan tugas dan latihannya. Untuk itu, berlatihlah secara mandiri atau berkelompok dengan teman sekelas Anda. Hai Quipperian, pernahkah kamu mendengar mikroorganisme bernama amoeba? Salah satu keunikan amoeba adalah mampu membelah diri menjadi dua kali lipat jumlah semula. Contoh, satu amoeba akan membelah diri menjadi dua amoeba, dua amoeba akan membelah diri menjadi empat amoeba, dan seterusnya. Jika diurutkan, banyaknya amoeba setelah membelah diri akan membentuk pola barisan yang disebut barisan geometri, lho. Apa yang dimaksud barisan geometri? Yuk, simak selengkapnya! Apa itu Barisan dan Deret? Sebelum belajar lebih lanjut tentang barisan dan deret geometri, kamu harus tahu dulu apa itu barisan dan deret. Barisan adalah pola suatu bilangan dengan aturan atau ketentuan tertentu. Sementara deret adalah bentuk penjumlahan dari suatu pola bilangan atau barisan. Pengertian Barisan dan Deret Geometri Sama seperti aritmatika, geometri juga terdiri dari barisan dan deret atau kamu biasa menyebutnya sebagai barisan geometri dan deret geometri. Apa perbedaan antara barisan dan deret geometri? Pengertian Barisan Geometri Barisan geometri adalah pola bilangan atau urutan bilangan yang memiliki perbandingan atau rasio tetap antarsukunya. Contohnya seperti pada pembelahan amoeba, di mana satu amoeba akan membelah diri menjadi dua, dua amoeba akan membelah diri menjadi empat, dan seterusnya. Jika dinyatakan sebagai barisan geometri, akan menjadi 1, 2, 4, 8, 16, 32, dan seterusnya. Bilangan 1, 2, 4, 8, …, n disebut sebagai suku atau penyusun barisan. Secara matematis, suku dilambangkan sebagai Un suku ke-n. Sementara itu, nilai perbandingan antara Un+1 dan Un disebut sebagai rasio. Secara matematis, rasio dilambangkan sebagai r. nilai rasio tidak selalu r > 1, ya. Jika nilai sukunya semakin mengecil, sudah pasti rentang rasionya r 1 dan nilainya akan terus membesar tanpa ada batas tertentu. Ciri Deret Geometri Ciri deret geometri adalah suku-suku yang dijumlahkan memiliki perbandingan nilai tetap. Contohnya, 1 + 2 + 4 + 8 + 16 + 32 + … + … + …, dan seterusnya. Rumus Barisan dan Deret Geometri Rumus barisan geometri biasanya digunakan untuk menentukan suku ke-n dari barisan tersebut. Sementara rumus deret digunakan untuk mencari jumlah n suku tertentu dari barisan geometri. Seperti apa sih rumusnya? Rumus Barisan Geometri Secara matematis, rumus suku ke-n barisan geometri adalah sebagai berikut. Dengan ketentuan Un = suku ke-n; a = suku ke-1 atau U1; n = letak suku yang dicari; dan r = rasio atau perbandingan antara Un+1 dan Un. Setelah kamu tahu rumus untuk mencari suku-n, cobalah hitung berapa jumlah amoeba yang dihasilkan pada pembelahan ke-10? Jumlah awal amoebanya adalah satu, ya. Mula-mula, kamu harus membuat barisan geometri dari pembelahan amoeba seperti berikut. 1, 2, 4, 8, 16, 31, …, … Dari barisan di atas, diketahui a = U1 = 1 r = 2 1 = 2 atau 4 2 = 2 n = 10 dengan demikian Jadi, banyaknya amoeba di pembelahan ke-10 adalah 512. Rumus Deret Geometri Berdasarkan nilai rasionya, deret geometri memiliki beberapa rumus seperti berikut. Rumus deret geometri untuk r > 1 Jika r > 1, rumus deret geometrinya dinyatakan sebagai berikut. Dengan Sn = jumlah n suku barisan geometri; a = suku ke-1 atau U1; n = letak suku yang dicari; dan r = rasio atau perbandingan antara Un+1 dan Un. Rumus deret geometri untuk r 1, rumus deret geometrinya dinyatakan sebagai berikut. Dengan Sn = jumlah n suku barisan geometri; a = suku ke-1 atau U1; n = letak suku yang dicari; dan r = rasio atau perbandingan antara Un+1 dan Un. Rumus deret geometri tak hingga konvergen Deret geometri tak hingga konvergen adalah jumlah barisan geometri yang banyaknya tak hingga dengan nilai yang terus mengecil. Secara matematis, rumus deret geometri tak hingga konvergen adalah sebagai berikut. Contoh deret geometri tak hingga konvergen adalah saat kamu menjatuhkan bola dari ketinggian tertentu. Semakin lama, ketinggian bola akan berkurang hingga kemudian berhenti. Rumus deret geometri tak hingga divergen Divergen artinya menyebar, sehingga deret geometri tak hingga divergen adalah jumlah barisan yang banyaknya tak hingga dengan nilai yang terus membesar. Oleh karena nilainya yang terus membesar tanpa ada batas tertentu, maka rumus deret geometri tak hingga divergen tidak bisa ditentukan karena S∞ = ∞. Bagaimana Penerapan Barisan dan Deret Geometri dalam Kehidupan Sehari-Hari? Penerapan barisan dan deret geometri dalam kehidupan sehari-hari adalah sebagai berikut. Menghitung pembelahan mikoorganisme, misalnya pada reproduksi bakteri. Menentukan panjang lintasan bola yang dijatuhkan dari ketinggian tertentu hingga berhenti. Menghitung pertumbuhan penduduk dan memperkirakan jumlah penduduk di masa mendatang. Menghitung peluruhan zat radioaktif. Contoh Soal Barisan dan Deret Geometri Untuk mengasah kemampuanmu tentang materi ini, yuk simak contoh soal berikut. Contoh Soal Barisan Geometri Diketahui suatu deret geometri berikut. Berapakah nilai suku ke-15? Pembahasan Mula-mula, kamu harus mencari rasio dari barisan pada soal. Dengan demikian, suku ke-15 bisa dicari dengan rumus berikut. Jadi, suku ke-10 nilainya adalah Contoh Soal Deret Geometri Farhan memiliki seutas tali. Lalu, tali tersebut dipotong menjadi 5 bagian dengan ketentuan, setiap potongan merupakan kelipatan potongan sebelumnya dan nilai kelipatan itu selalu tetap. Potongan tali yang paling pendeknya adalah 3 cm dan potongan tali terpanjangnya 243 cm. Berapakah panjang tali mula-mula? Pembahasan Diketahui U1 = a = 3 cm U5 = 243 Ditanya Sn =…? Jawab Mula-mula, kamu harus mencari rasio setiap potongan tali tersebut menggunakan SUPER “Solusi Quipper” berikut. Lalu, tentukan panjang tali menggunakan rumus deret geometri untuk r > 1. Jadi, panjang tali Farhan mula-mula adalah 363 cm atau 3,63 m. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper!

aplikasi barisan dan deret geometri